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Abstract: One of the hallmarks of cancer is the uncontrolled cell proliferation which causes more deaths among the hu-

man diseases throughout the globe. One in eight deaths worldwide are due to cancer, it is the second and third leading 

cause of death in economically developed and developing countries, respectively. As it is caused by both external and in-

ternal factors, a balanced approach to cancer control includes prevention, early detection, and effective treatment. In the 

treatment of cancer, chemotherapy is one of the practical methods and is widely used employing drugs that can destroy 

cancer cells by impeding their growth and reproduction. Despite the great strides made in the treatment of cancer over the 

past 50 years, it continues to be a major health concern and therefore, extensive efforts have been devoted to search for 

new scaffolds to develop chemotherapeutics. In this perspective, over the past two decades from this laboratory extensive 

efforts have been made in the development of new chemotherapeutic agents for the treatment of cancer. In this review, 

glimpses on types of current chemotherapeutic agents based on their action of inhibition and the new molecules that are 

being developed based on the scaffolds such as pyrrolo[2,1-c][1,4]benzodiazepines, podophyllotoxins, benzothiadiazine 

1,1-dioxides, naphthalimides and monastrol across the world as well as in this laboratory have been articulated. 
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BACKGROUND 

 Cancer is one of the most deadly diseases that remain as 
a challenge to both physicians as well as scientists. Every 
year more than 20% of the population is affected by cancer 
and the rate of its induction throughout the world is increas-
ing annually. By 2020, it is estimated that there will be 27 
million new cancer cases and 17.5 million cancer deaths 
making it an area for major focus for researchers [1]. Cancer 
is not a single disease but a broad group characterized by 
uncontrolled proliferate growth and spread of aberrant cells 
from their site of origin. At the simplest level, cancer cells 
may be regarded as having lost touch with their environment 
and they are no longer responsive to the controlling signals 
and interactions that occur continuously in normal healthy 
tissues. A balanced approach to cancer control includes  
prevention, early detection, and effective treatment. In the 
treatment of cancer, chemotherapy is widely used method to 
destroy cancer cells by impeding their growth and re-
production by different agents [2]. The chemotherapeutic 
agents include drugs interfering with DNA synthesis, inhibit-
ing the function of mitotic spindle and drugs with complex 
action in various cellular processes within the cancer cells 
[3]. Despite the improvements in prevention and immense 
advances in the field of basic and clinical research, cancer 
remains with a strong need to develop more potent selective 
chemotherapeutics. Therefore, the discovery of potent, 
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selective and less toxic anticancer agents is still a major chal-
lenge. 

CAUSES FOR CANCER 

 Almost all cancers are caused by abnormalities in the 
genetic material of the transformed cells. These abnormali-
ties may be due to the effects of carcinogens, such as tobacco 
smoke, radiation, chemicals or infectious agents [4]. Other 
cancer-promoting genetic abnormalities may be randomly 
acquired through errors in DNA replication or are inherited, 
and present in all cells from birth. The heritability of cancers 
is usually affected by complex interactions between carcino-
gens and the hosts genome [5]. Genetic abnormalities found 
in cancer typically affect two classes of genes. Cancer pro-
moting oncogenes, activated in cancer cells that give new 
properties such as hyperactive growth and division. Tumor 
suppressor genes, inactivated in cancer cells that results in 
the loss of normal functions such as accurate DNA replica-
tion, control over the cell cycle, orientation and adhesion 
with in tissues and interaction with protective cells of the 
immune system. 

TYPES OF CHEMOTHERAPEUTICS 

 The current chemotherapeutic drugs are divided into sev-
eral categories based on their effect on specific chemical 
substances within the cancer cells, the cellular activities or 
processes the drug interferes with, and the specific phases of 
the cell cycle the drug effects. These includes DNA interac-
tive agents, DNA topoisomerase I and II inhibitors, antimi-
totic agents, tubulin polymerization inhibitors, carbonic an-
hydrase (CA) inhibitors, CDK inhibitors, antimetabolites, 
and miscellaneous agents and these are briefly discussed 
below. 
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DNA Interactive Agents 

 With the well-established characteristics and its role in 
the control of cellular functions as genetic material, DNA 
has been considered as a favored target for cancer che-
motherapeutic agents [6, 7]. The double helical structure of 
deoxyribonucleic acid (DNA) represents the richest source of 
information within a living organism and its sequence codes 
for protein/enzyme synthesis via the process of translation 
[8]. The major groups of clinically important DNA reactive 
agents are covalent and non-covalent binders. The covalent 
binders include alkylators such as cis-platin and reversible or 
irreversible major and minor groove binders. Distamycin and 
anthramycin are examples for selective minor groove binders 
[9]. Intercalators are the molecules that insert perpendicu-
larly into the DNA without forming covalent bonds such as 
anthracycline, actinomycin-D. The only recognized forces 
that maintain the stability of the DNA-intercalators complex, 
even more than DNA alone, are van der Waals, hydrogen 
bonding, hydrophobic, and/or charge transfer forces [10-13]. 
Amongst this class, minor groove covalent binders have 
gained significant attention in the development of new anti-
cancer agents. 

DNA Topoisomerase I and II Inhibitors 

 Topoisomerases are essential enzymes that maintain the 
topology of DNA. Inhibitions of type I or II topoisomerases 
interferes with both transcription and replication of DNA by 
upsetting proper DNA super- coiling. Some type I topoi-
somerase inhibitors include camptothecins such as irinotecan 
and topotecan. Type II inhibitors include amsacrine, tenipos-
die, etoposide and its phosphate which are the semisynthetic 
derivatives of naturally occurring epipodophyllotoxins [14-
16]. 

Antimitotic Agents or Tubulin Binders 

 Antimitotic agents interact with proteins rather than 

DNA, which arrests mitosis in metaphase and these include 

vinca alkaloids, colchicines [17-18] and taxol [19]. They 

exert their activity through the interaction with tubulin, a 

protein essential for the formation of microtubules in mitotic 

spindles, which is essential for cell division [20]. Promising 

anticancer drugs block cell division by stabilizing and desta-

bilizing microtubule activity. As these compounds possess 

neurotoxicity and myelosuppression [21], their use is limited 

in cancer therapy. The colchicine derivative, democochicine 

shows very good antitumor activity and vindesine, a new 

semisynthetic analogue of vincristine alkaloid is being 

widely used in clinic [22-24]. 

Carbonic Anhydrase (CA) Inhibitors 

 The carbonic anhydrase (CA) family of Zn(II) metalloen-

zymes catalyzes the reversible hydration of CO2 to HCO3
-
. 

These are involved in various physiological processes asso-

ciated with pH control, respiration, transport of CO2/HCO3
- 

between metabolizing tissues and the lungs, fluid secretion, 

biosynthetic reactions such as the lipogenesis, glu-

coneogenesis and ureagenesis. More recently, CA inhibition 

has been implicated as playing an important role in cancer 

progression [25-27]. Generally, an aromatic or heteroaro-

matic sulfonamide moiety (ArSO2NH2) is the primary recog-

nition element necessary for small molecules to bind the 

active site of CA. Some of the clinical agents from this class 

of CA inhibitors include acetazolamide, methazolamide, and 

indisulam, which is in phase II clinical trials as an anticancer 

agent to treat solid tumors [28]. 

CDK Inhibitors 

 Cyclin-dependent kinases (CDK) belong to a group of 
protein kinases, involved in the regulation of the cell cycle. 
CDKs are also involved in the regulation of transcription and 
mRNA processing. Serine and threonine kinases are those in 
which CDKs phosphorylate proteins on serine and threonine 
amino acid residues. CDK is activated by association with 
cyclin, forming a cyclin-dependent kinase complex. CDKs 
are considered a potential drug target for anti-cancer medica-
tion and CDK inhibitor such as seliciclib is currently under 
clinical trials [29-32]. 

Antimetabolites 

 Antimetabolites (azathioprine, mercaptopurine) masquer-
ade as purines or pyrimidines, which are the building blocks 
of DNA. They prevent the purines and pyrimidines from 
incorporating into DNA during the “S” phase of cell cycle, 
thus stopping the normal development and division. Because 
of their efficiency, these drugs are the most widely used cy-
tostatics [33]. 

NEW CHEMOTHERAPEUTICS UNDER DEVELOP-
MENT 

 Cancer is a group of diseases characterized by uncon-
trolled growth or spread of abnormal cells. It involves the 
conversion of any normal cells to a cancerous cell showing 
tandem replication and cell divisions at much faster rate in 
comparison to the normal cells. Chemotherapy plays most 
effective role in solid tumors as an adjuvant to initial therapy 
by surgical or radiotherapeutic procedures. As mentioned 
earlier, the chemotherapeutic agents can be categorized into 
functional sub groups: DNA interactive agents, DNA topoi-
somerase I and II inhibitors, carbonic anhydrase (CA) inhibi-
tors, CDK inhibitors, tubulin polymerization inhibitors, an-
timitotic agents, anti-metabolites, etc. In this review an effort 
has been made to outline the development of new che-
motherapeutic agents based on pyrrolo[2,1-c][1,4]benzo-
diazepines, podophyllotoxins, benzothiadiazine1,1-dioxides, 
naphthalimides and monastrol type scaffolds. 

PYRROLO[2,1-C][1,4]BENZODIAZEPINES AS DNA 
BINDING ANTITUMOR ANTIBIOTICS 

 The pyrrolo[2,1-c][1,4]benzodiazepines (PBDs) belong-
ing to the class of DNA-interactive antitumor antibiotics 
produced by various Streptomyces species, are one of the 
promising type of lead compounds. They differ in the num-
ber, type and position of substituent in both their aromatic A-
ring and pyrrolidine C-rings and in the degree of saturation 
of the C-ring which can be either fully saturated or unsatu-
rated at either the C2-C3 (endocyclic) or C2 (exocyclic) po-
sitions. To date, about thirteen PBD based antibiotics have 
been isolated, which includes anthramycin [34, 35], 
mazethramycin [36], porothramycin [37], prothracarcin [38, 
39], sibanomycin [40], tomaymycin [41, 42], sibiromycin 
[43], chicamycin A [44], neothramycin A, B [45] and DC-81 
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[46-48] (Fig. 1). The pyrrolo[2,1-c][1,4]benzodiazepine 
(PBD) interactions with DNA are unique because they bind 
within its minor groove forming a covalent aminal bond be-
tween the C11-position of the central B-ring and the N2 
amino group of a guanine base [49]. The cytotoxic and anti-
tumor activity of PBDs is attributed to their ability to form 
covalent DNA adducts. Molecular modeling, solution NMR, 
fluorimetry and DNA foot printing experiments have shown 
that these molecules have a preferred selectivity for Pu-G-Pu 
sequences [50, 51], and are oriented with their A-rings 
pointed either towards the 3' or 5' end of the covalently 
bonded DNA strand (as in case of anthramycin and 
tomaymycin). The PBDs have been shown to interfere with 
the action of endonuclease enzymes on DNA and to block 
the transcription by inhibiting DNA polymerase in a se-
quence specific manner, which is relevant for the biological 
activity [52, 53]. 

 The known PBD natural products have a (S) configura-
tion at the C11a-position, which provides them with a right 
handed twist when viewed from the C-ring towards the A-
ring. This has given the appropriate three-dimensional shape 
for isohelicity with the minor groove of DNA, leading to a 
snug fit at the binding site. The racemization at C11a can 
significantly reduce both DNA binding affinity and in vitro 
cytotoxicity. The synthetic PBD with the (R) configuration at 
C11a have shown to be devoid of both DNA binding affinity 
and in vitro cytotoxicity [54]. The N10-C11 imine moiety 
may exist in the hydrated form depending upon precise 
structure of the compound and the method of isolation or 

synthetic workup. Imines and methyl ether forms are inter-
convertable by dissolution of imine in methanol or by sev-
eral cycles of refluxing the methyl ether in chloroform fol-
lowed by evaporation of the solvent under vacuum (Fig. 2). 
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PBD-DNA Interactions 

 The mechanism of action of the PBDs is associated with 
their ability to form an adduct in the minor groove and thus 
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Fig. (1). Naturally occurring PBDs. 
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interfering with DNA processing. After insertion into the 
minor groove, an aminal bond is formed through nucleo-
philic attack of the N2 of a guanine base at the electrophilic 
C11 position of PBD. The X-Ray diffraction studies on crys-
tals of anthramycin methylethers have shown that the mole-
cule is twisted 0-50

o
 from one end to the other along the axis 

and this might fit into one of the grooves of DNA. In the 
CPK models, the drug fits snugly within the narrow groove 
without distortion of the DNA helix. The structure of the 
anthramycin DNA adduct was initially studied independently 
by Hurley and Kohn using indirect techniques, but more re-
cently fluorescence spectroscopy, high field NMR and mo-
lecular modeling have been employed [55-61] (Fig. 3). 

Synthetic Approaches of Pyrrolo[2,1-c][1,4] Benzodi-
azepines 

 Biosynthesis of the naturally occurring PBDs has been 
extensively elucidated and the first total synthesis of a carbi-
nolamine containing PBD of anthramycin has been reported 
in 1968 [62]. The various synthetic approaches to the PBDs 
scaffold have been reviewed in 1994, 1998, and 2002 [63-
65]. These includes hydride reduction of seven-membered 
cyclic dilactams [66, 67], reductive cyclization of acyclic 
nitroaldehydes [68], iminothioether approach [69, 70], cycli-
zation of aminothioacetals [71, 72], deprotective cyclization 
of the diethylthioacetals via N10 protected precursors [73], 
oxidation of cyclic secondary amines [74-76], reductive cy-
clizations [77] and solid phase approaches [78, 79]. 

Kaneko Approach (Iminothioether Reduction) 

 Kaneko and co-workers [80] have developed a mild 
method for the reduction of PBD dilactams to the carbinola-
mine using aluminium amalgam (Scheme 1).  

 This methodology has been employed for the preparation 
of bicyclic and tricyclic analogues of anthramycin, as well as 
in the total synthesis of some naturally occurring PBDs like 
chicamycin. By using this approach Baraldi and co-workers 
have synthesized some heterocyclic PBD analogues in which 
the A ring of PBD skeleton is replaced with a 1,3 or 1,5-
disubstituted pyrazole nucleus [81, 82]. 

Thurston’s Approach (Cyclization by Deprotection of Di-
ethylthioacetal) 

 Thurston and co-workers have developed an efficient 
method for the synthesis of various PBDs containing carbi-
nolamine moiety by employing mercuric chloride in the key 
cyclization step. In this procedure, the products are generally 
isolated in the imine form and this approach has been util-
ized for the synthesis of a variety of naturally occurring and 
synthetic PBDs such as DC-81, C8-linked DC-81 dimers, A-
ring modified analogues of PBD, PBD-EDTA conjugates, 
lexitropsin conjugates of PBD, C2 linked PBD dimers, 
imine-amide PBD dimers and napthalimide conjugates of 
PBD (Scheme 2) [83, 89]. 

Fukuyama’s Approach 

 It has been developed to incorporate certain labile func-
tionalities such as C8-epoxide moiety in the PBD system as 
the conventional approaches failed to give the desired re-
sults. In this 9-fluorenyl methyloxy carbonyl (Fmoc) group 
has been used to protect the amine group and which can be 
easily removed by cleavage by Bu4N

+
F

-
 (TBAF) to provide 

C8 epoxide PBD system (Scheme 3).  

 By using this approach, hybrid molecules containing 
PBD-oligo-pyrrole carriers, AT-groove binding hybrids and 
C7 aryl substituted PBDs have been synthesized as minor 
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groove binders [90, 91]. Further, this strategy has also been 
employed in the synthesis of C2/C2'-exo-and C2-C3/C2'-C3'-
endo unsaturated PBD dimers with remarkable DNA binding 
affinity [92, 93]. 

Kamal’s Approach (Oxidation of Cyclic Secondary Amine) 

 The PBDs with either a secondary amine or amide func-
tionality at N10-C11 can be readily synthesized, but the in-
troduction of imine or carbinolamine at this position is diffi-
cult due to high reactivity of these functional groups. In this 
elegant approach, the imine or carbinolamine moiety has 
been introduced by the oxidation of PBD secondary amines 

with DMSO/(COCl)2 or TPAP (tetra-n-propyl ammonium 
perruthenate) in good yields as illustrated in Scheme 4 [94, 
95]. 

Azido/Nitro Reductive Cyclization 

 The synthesis of N10-C11 imine containing PBDs via 
reductive cyclization has been reported by Miyamoto and co-
workers [96]. Further, in an endeavor to explore new practi-
cal methods for the synthesis of PBDs particularly by the 
azido reductive process extensive investigations has been 
carried out in this laboratory. Recently, a facile intramolecu-
lar azido/amido reductive cyclization approach for the syn-
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thesis of PBD and their dimers [97-99] has also been re-
ported (Scheme 5). 

Hydride Reduction Approach 

 This approach involves the synthesis of imine form of 
PBD analogues through hydride reduction of N-10 MOM 
and SEM protected dilactams by employing hydride transfer 
reagents such as LiBH4, NaBH4 [100, 101]. 

Solid Phase Approach 

 Thurston and co-workers [102] have developed a solid 
phase approach for the synthesis of PBD imines on p-
nitrophenylcarbonate Wang resin using a variety of oxida-
tion and cyclization procedures. In this laboratory, new solid 
phase approach [103, 104] has been employed for the syn-
thesis of PBD dilactams and PBD imines by using Wang 
resin (Scheme 6). 

Structure Activity Relationship 

 The naturally occurring PBDs namely anthramycin, 
tomaymycin, sibiromycin, neothramycin and DC-81 have 
different type of substitutions. The electron-donating sub-
stituents are required in the aromatic A ring for biological 
activity. Bulky substituent like a sugar moiety at C7 position 
enhances the DNA binding affinity and cytotoxicity. It is 
interesting to note that C ring modified PBDs appear to pro-
vide both greater differential thermal stabilization of DNA 
duplex and significantly enhance kinetic reactivity during 
covalent adduct formation. Similarly, the C2-substituted 

naturally occurring PBDs exhibit more cytotoxicity com-
pared to their unsubstituted counter parts. Based on these 
considerations a structure activity relationship has been de-
rived by Thurston and co-workers. 

Synthesis of Ring-Modified PBDs 

A-Ring Modifications 

 Baraldi and co-workers [105] have investigated hetero-
cyclic analogues of pyrrolo-[2,1-c][1,4]benzodiazepine 
(PBD) by replacing A ring with pyrazolo[4,3-e]pyrrolo[1,2-
c][1,4]diazepinone ring system. Some of these pyrazole PBD 
analogues have displayed an interesting cytotoxicity profile. 
Similarly, Thurston and co-workers [106] have synthesized 
some pyridine, pyrazine and pyrimidine A-ring analogues of 
PBDs (41-43) and evaluated for their DNA binding affinity 
(Fig. 4). It has been observed that the aromatic A-ring has a 
modest influence on thermal denaturation of DNA. Further, 
they have also synthesized some tetracyclic PBD analogues 
by modification of A-ring, however the DNA binding affin-
ity and cytotoxicity has been reduced compared to DC-81. 

B-Ring Modifications 

 Very few attempts have been made on B-ring modifica-
tions. Robba and co-workers [107] have synthesized a series 
of PBDs having N10-C11 amidines functionality (44-46) and 
evaluated the in vitro DNA binding through thermal denatu-
ration studies. It has been observed that some of these 
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compounds show a significant increase in melting for calf 
thymus DNA comparable to the natural product DC-81 (Fig. 
5). 

C-Ring Modifications 

 A number of naturally occurring PBDs namely an-
thramycin, tomaymycin, sibiromycin and neothramycin have 
different type of substitutions on the C ring. The modifica-
tions on C-ring provide both greater thermal stabilization of 
DNA duplex and significantly enhanced reactivity during the 
covalent adduct formation. Thurston and co-workers have 
synthesized a series of C2-exo unsaturated, C2/C3-endo un-
saturated, C2-aryl 1,2/2,3-endo unsaturated and C2-C3 un-

saturated PBDs (47-51). These PBDs with C2 modifications 
have been evaluated for both DNA-binding reactivity and in 
vitro cytotoxic potency. Some of them have shown signifi-
cant activity comparable to anthramycin potency [108-110]. 
Recently, a series of C2-fluorinated PBDs 52 have been syn-
thesized and screened for in vitro cytotoxicity against a 
number of cancer cell lines [111]. These PBDs have shown 
550 fold increases in activity against the CH1 cell line when 
compared to the unsubstituted PBDs along with good DNA 
binding affinity. In this laboratory C2-fluorinated monomers 
of PBD and DC-81 dimers 53 have been synthesized and 
biologically evaluated. These new fluorinated compounds 
possess more potent in vitro anticancer activity in a number 
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of human cancer cell lines. Moreover, they have also exhib-
ited good DNA binding ability compared to A-ring unsubsti-
tuted C2-fluorine compounds (Fig. 6). Recently, from this 
laboratory 1,2,3-triazolo linked PBD at C2 position have 
been reported with promising antitumor activity and DNA 
binding affinity [112-114]. 

Pyrrolo[2,1-c][1,4]benzodiazepine Dimers 

C7/C2--Linked Dimers 

 Suggs and coworkers [115, 116] have reported the first  
PBD dimer comprising of two PBD units joined through A- 
C7/A-C7’ positions by alkanediyldioxy linker 54 (some in- 
cluding nitrogen heteroatoms) or alkanediyldisulfide linkers.  
The C7-linked dimers have been considered as unique  
among the DNA-cross linkers in their specificity for dG- 
containing duplex DNA. Lown and co-workers [117] have  
designed and synthesized PBD dimers that are linked at C2  
position of the PBD subunits through alkylamido spacer 55.  
A series of these dimers have been evaluated for their cyto- 
toxicity against 60 human tumor cell line screen (Fig. 7). It  
has been observed that these compounds exhibited moderate  
to promising cytotoxic potency against different cancer cells. 

C8-Linked Dimers 

 In this laboratory after the discovey of DC-81 dimers by 
Thurtson and coworkers, extensive work on design and syn-

thesis of C8-linked dimers has been carried out and their 
DNA binding, as well as cytotoxic potency has been evalu-
ated [118]. This includes C8-linked dimers 56, C2 exocyclic 
dimers 57, C2-fluoro dimers 58 and C8-linked imine-amide 
mixed dimers 59 with varying alkyl chain spacers. These 
dimers have displayed potent antiproliferative activity in 
different cell lines [119]. Lown and coworkers have reported 
a novel bis-pyrrolo[2,1][1,4]benzodiazepine-pyrrole and 
imidazole polyamide conjugates 60 with potent antiprolifera-
tive activity in many human cancer cell lines [120, 121]. 
Recently, Thurston coworkers have reported an asymmetric 
tripyrrole-linked sequence selective PBD dimer 61 that binds 
with high affinity to an interstrand cross linking site span-
ning 11 DNA base pairs (Fig. 8) [122]. 

C8-Linked Pyrrolo[2,1-c][1,4]benzodiazepine Conjugates 

 In the search for compounds with better antitumor selec-
tivity and DNA sequence specificity many C8-linked hybrids 
of pyrrolo[2,1-c][1,4]benzodiazepines have been designed. 
Baraldi and co-workers [74] have designed and synthesized 
distamycin-PBD and netropsin-PBD conjugates 62 as novel 
sequence selective C8-linked PBD hybrids and investigated 
for the sequence selectivity and stability of DNA drug com-
plexes. Hurley and co-workers [123] have synthesized novel 
DNA-DNA interstrand adenine-guanine cross-linking UTA-
6026 compound 63. Preliminary in vitro tests showed that 
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UTA-6026 has remarkably potent cytotoxicity to several 
tumor cell lines (IC50 = 0.28 nM in MCF-7 breast cancer cell 
line, IC50 = 0.047 nM in colon tumor cell line SW-480 and 
IC50 = 5.1 nM in human lung tumor cell line A549). Lown 
and co-workers [124] have also reported the synthesis of a 
series of PBD-lexitropsin conjugates 64 linked through the 
C8 position with a suitable linker. These compounds have 
been synthesized in view of the effect with sequence selec-
tive binding in DNA duplex. Similarly, unsymmetrical DNA 
cross-linkers 65, C8-epoxide linked pyrrolo[2,1-
c][1,4]benzodiazepine 66, PBD-indole conjugates (67, 68) 
have been synthesized and evaluated to possess higher cyto-
toxicity against selected human cancer cell lines. Moreover, 
novel water insoluble and soluble PBD-gylcosylated pyrrole 
and imidazole polyamide conjugates have been reported 
(Fig. 9) [125-127]. 

 In the course of a program to develop new antitumor 
drugs from this laboratory novel C8-linked pyrrolo[2,1-
c][1,4]benzodiazepine conjugates have been designed, syn-
thesized and evaluated as potential DNA binding agents. A 
series of PBD conjugates having different DNA interacting 
ligands such as benzimidazole 69 [128], polyaromatic hy-
drocarbons (pyrene amine and chrysene amine [129, 130] 70, 
anthraquinones 71 [131], naphthalene [132] and acridones 
[133] by using varying linker length have been synthesized 
to enhance the DNA binding affinity and antitumor activity. 

 All these designed molecules have shown good DNA 
binding affinity with better anticancer activity. In addition to 
above derivatives, quinolone 72 [134], pyrimidine hybrids 
73 [135], C2/C8 dimers [136], azepine conjugates and 
methanesulfonate derivatives 74 [137, 138] of pyrrolo[2,1-

c][1,4]benzodiazepines has also been reported from this 
group (Fig. 10). More recently, from this laboratory yet an-
other series of a novel quinazolinone linked PBD conjugates 
have been synthesized and evaluated as potent antitumor 
agents with effective DNA affinity. Similarly naphthalimide, 
triazolo[1,2,4]benzothiadiazine linked PBD conjugates have 
also been reported with remarkable cytotoxicity and good 
binding affinity [139-144]. 

 Owing to the increasing interest in the design and synthe-
sis of DNA interstrand cross linking conjugates, extensive 
research endeavors has been carried out in this laboratory to 
improve the DNA binding affinities and cytotoxicity of 
novel PBD conjugates. Amongst them the C8-linked PBD 
hybrids have shown excellent DNA binding affinity as well 
as in vitro cytotoxicity, and the most potent compounds have 
been patented for potential commercial exploitation. Herein, 
the designed and synthesized coumarin-piperazine linked 
PBDs with varying alkane spacers is discussed. These con-
jugates have been tested against sixty human cancer cell 
lines derived from nine cancer types as per NCI protocol. 
Amongst them one analogue exhibited significant activity 
against forty one cell lines in nine cell panels, with GI50 
value of < 20 nM. The DNA binding affinity for this novel 
coumarin linked PBD conjugate has been examined by ther-
mal denaturation studies using calf thymus (CT) DNA. One 
of the coumarin-PBD conjugate elevates the helix melting 
temperature of CT-DNA by a margin of 7.9 

o
C after incuba-

tion for 18h at 37 
o
C [145]. Similarly several series of C8-

linked isoxazoline [146], chalcone [147], benzimidazole 
[148], phenanthrylphenol [149], benzophenone [150], ben-
zothiazole and benzoxazole PBD conjugates [151] have been 
designed, synthesized and evaluated for their antiprolifera-
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Table 1. Log10GI50 In Vitro Cytotoxicity Values of PBD Conjugates 

Cancer cell lines Moiety linked to PBD 

Leukamia NSCl Colon CNS Melanoma Ovarian Renal Prostate Breast 

Isoxazoline (75) -6.76 -6.59 -6.41 -6.51 -6.68 -6.44 -6.58 -6.49 -6.74 

Quinolinechalcone (76) -6.94 -6.87 -6.41 -6.16 -6.59 -5.28 -6.17 -5.85 -6.52 

Benzoxazole (77) -7.51 -7.02 -7.08 -7.00 -7.08 -6.79 -6.96 -7.47 -7.25 

Benzimidazole-indole (78) -6.88 -6.08 -6.04 -6.00 -6.27 -6.04 -6.10 -6.62 -6.14 

Benzimidazolefuryl (79) < -8.00 < -7.92 < -7.92 < -8.00 < -7.92 < -8.00 < -7.92 < -7.64 < -7.79 

Coumarin (80) -7.68 -7.51 -7.68 -7.50 -7.28 -7.59 -7.66 -7.57 -7.55 

 

Table 2. Thermal Denaturation Data for PBD Conjugates with Calf Thymus CT-DNA 

( Tm 
o
C) after incubation at 37

o
c for Moiety linked to PBD [PBD]:[DNA] molar ratio 

0 h 18h 

Isoxazoline (75) 1:5 4.1 6.2 

Quinolinechalcone (76) 1:5 4.3 4.9 

Benzoxazole (77) 1:5 6.2 6.3 

Benzimidazole-indole (78) 1:5 1.5 2.0 

Benzimidazolefuryl (79) 1:5 5.1 7.0 

Coumarin (80) 1:5 7.3 7.9 

DC-81 1:5 0.3 0.7 
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tive activity at NCI. All these PBD conjugates have shown 
excellent cytotoxic activity against tested cell lines with 
good binding affinity (Fig. 11). The cytotoxic and DNA 
binding affinity values of the most potent molecules (75-80) 
have been summarized in Tables 1 and 2 and some com-
pounds are undergoing preclinical studies. 

Prodrug Monotherapy 

 A major limitation of cancer chemotherapy results from 
the lack of tumor specificity shown by most anticancer drugs 
leading to severe side-effects due to the destruction of 
healthy tissues [152]. One approach to overcome these 
drawbacks is the development of relatively non-toxic anti-
cancer agents, in a prodrug form, specifically activated in 
and around the tumor tissue [153]. An ideal prodrug needs to 
be stable at in vivo, far less toxic than its parent form, and 
activated specifically in or within the microenvironment of 
the tumor cells or tumor site [154]. The prodrug monother-
apy (PMT) [155-160] strategies, antibody directed enzyme 
prodrug therapy (ADEPT) [161] and gene directed enzyme 
prodrug therapy (GDEPT) [162] have been developed to 
target tumor cells selectively. PMT is a much safer and con-
venient method to activate the prodrugs keeping in view the 
immune response of the biological system towards ADEPT 
strategy and the intricacy to transfect the genes specifically 
to the tumor cells by GDEPT. 

 In view of the high therapeutic efficacy of PBDs and to 
overcome the limitations such as, lack of tumor selectivity, 
high reactivity of the pharmacophore and low water solubil-
ity, the prodrugs have been developed. Thurston and co-
workers have synthesized some PBD prodrugs (81-85) based 
on ADEPT and GDEPT strategies, that can be activated by 
nitroreductase, glutathione transferase (GST) and car- 
boxypeptidase G2 enzymes [162-165]. Recently, they have 
also reported another C2/C2'-aryl-substituted PBD dimer 
prodrug 86 by introducing sodium bisulfite groups to the 
C11/C11'-positions of the parent bis-imine with improved 
solubility (Fig. 12). This newly synthesized prodrug is highly 
water soluble, stable in aqueous conditions and the rate of 

DNA cross-link formation is much slower than parent bis-
imine. Further, it has also shown significant antitumor in 
vivo activity across a wide range of human tumor xenograft 
models. 

 In this laboratory, PBD prodrugs containing a G-
galactoside moiety have been synthesized for application in 
selective chemotherapy of cancer. Prodrugs having the gen-
eral structure pyrrolobenzodiazepine-spacer-G-galactoside 
have been designed, synthesized and evaluated for activation 
by the enzyme G-galactosidase [166]. In the prodrugs 87 and 
88 the PBDs are connected to the G-D-galactoside moiety 
through a self-immolative spacer. The results interpret that 
the prodrugs possess a potential to be efficiently used for the 
targeted delivery of PBD anticancer agents to solid tumors 
by ADEPT (Table 3). Finally, the new PBD glycoside pro-
drugs possess all the essential requirements for their poten-
tial application in targeted therapy of cancer by enzyme di-
rected therapies. The in vivo targeting ability of the prodrugs 
is being initiated. Further, another PBD- -glucuronide pro-
drugs 89 have been designed synthesized for potential appli-
cation in selective chemotherapy of cancer and evaluated to 
possess highly reduced toxicity by aforesaid strategies (Fig. 
13) [167]. 

PODOPHYLLOTOXIN AND ITS DERIVATIVES 

 Natural products have historically provided new drugs 
against a wide variety of diseases and cancer is certainly no 
exception. Amongst podpophyllotoxin (PDT) 90, aryltetralin 
lactone is a bioactive lignan isolated from the plant Podo-
phyllum peltatum and Podophyllum emodi and has been the 
focus of extensive chemical modification leading to clini-
cally useful anticancer drugs [168-195]. The semisynthetic 
derivatives of podophyllotoxin such as etoposide (VP-16) 
91, teniposide (VM-26) 92 and etopophos 93 (Fig. 14), are 
widely used as anticancer drugs and shows good clinical 
effects against several types of neoplasms [168, 196, 197]. 
However, several limitations such as myelosuppression, de-
velopment of drug resistance and cytotoxicity towards nor-
mal cells, still exist. Most of the lignans are known to inhibit 
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Table 3. Cytotoxicity of the Prodrugs 

A375 cell line Hep G2 cell line 

Prodrug IC50 ( mol) IC50 ( mol) in the 

presence of 

-galactosidase 

IC50 ( mol) of  

parent PBD 

IC50 ( mol) IC50 ( mol) in the  

presence of 

-galactosidase 

IC50 ( mol)of 

parent PBD 

87 422.9 1.2 0.37 14.11 5.52 8.56 

88 9.74 0.09 0.06 >200 0.87 0.94 

 

the tubulin polymerization and DNA topoisomerase II en-
zyme [198-203]. Studies on Structure-Activity Relationship 
(SAR) have shown that podophyllotoxin like compounds 
preferentially inhibit tubulin polymerization, which leads to 
arrest of the cell cycle in the metaphase. However, etoposide 
like compounds are potent irreversible inhibitors of DNA 
topoisomerase II and their action is based on the formation 
of nucleic acid-drug-enzyme complex, which induces single- 
and double-stranded DNA breaks, eventually lead to cell 
death. 

Structure Activity Relationship Studies of Podophyllo-

toxin 

 Recent developments on podophyllotoxin based com-
pounds have provided insights into the Structure-Activity 
Relationships (SARs), which have assisted in the design and 
synthesis of new podophyllotoxin derivatives with potential 
antitumor activity. The SARs for etoposide analogues have 
been recently reviewed [204, 205] and some of the modifica-
tions have been carried out by various researchers to explain 
the mechanism of action [206-220]. The studies conducted 
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with regard to the inhibition of DNA topoisomerase II have 
shown the following relationships between structure and 
anticancer activity. The epimerisation at 4-position is con-
sidered important as it increases the biological activity in 
such a manner that the compounds with  -configuration are 
more potent than that of  -configuration. It has been ob-
served that trans lactone ring is crucial for exhibiting bio-
logical activity. The methylenedioxy group is important to 
exhibit optimal antitumor activity and whereas, the free rota-
tion of E ring is necessary for antitumor activity. Further, 
demethylation at 4-position of E-ring appears to be essential 
for DNA breakage activity. Based on the SAR studies vari-
ous modifications on podophyllotoxin have been carried out 
and discussed below. 

A-Ring Modifications 

 This includes derivatives in which the methylenedioxy 
group has been cleaved to produce two free phenolic groups 
and further transformed into other groups or oxygenated 
rings with or without substituents (94-96). These compounds 

have exhibited potent immunosuppressive activity. In few 
cases A-ring has been modified into phenazine ring and all 
these compounds have shown improved cytotoxic profile 
compared to that of etoposide (Fig. 15) [221-225]. 

B-Ring Modification 

 There are very few reports on the B-ring modifications. 
Thurston and coworkers [226] have synthesized -peltatin 
esters and ethers including its glycosidic ethylidene, ethen-
ylidene cyclic acetals 97, and have found these compounds 
to be more cytotoxic than etoposide but less active in their 
inhibitory action against DNA topoisomerase II (Fig. 16). 

C-Ring Modifications 

 The C-ring modification has gained much attention 
among all the podophyllotoxin modifications to improve the 
cytotoxicity profile. In this context, several C-ring aroma-
tized analogues 98, epipodophyllotoxin derivatives with an 
unsaturation side chain 99, benzodioxole lactones analogues 
100, and 4-oxa/thia-2-azapodophyllotoxin 101 have been 
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synthesized and tested against human DNA topoisomerase II 
for antitumor activity [227, 228]. Laatsch and coworkers 
[229] prepared some C-ring expansion products of podo-
phyllotoxin, obtained from the appropriate azide via a photo-
chemical nitrene rearrangement. Jurd and Hitatsuyanagi

 
have 

synthesized benzodioxole lactones analogues of podophyllo-
toxin, and 4-oxa/thia-2-azapodophyllotoxin 101 respectively 
[230-232]. These compounds have been tested for their bio-
logical activity and some of them have shown significant 
activity against different cancer cell lines (Fig. 17). 

Modifications at C4 Position of C-Ring 

 The C4-N-substituted podophyllotoxin congeners occupy 
a significant position in the recent development of podophyl-
lotoxin. Lee and co-workers [233] have carried out very ex-
tensive work in this area for the development of more potent 
podophyllotoxin based compounds. They have synthesized a 
number of C4-N-substituted podophyllotoxin derivatives 102 
and substituted aniline-PDT derivatives 103 by replacing the 
C4-hydroxyl group by an amino group with promising DNA 
topoisomerase II inhibitory activities [234, 235]. Another 
synthesized series of novel 4 -amino derivatives 104 of 
etoposide have demonstrated excellent activity against MDR 
and topoisomerase II resistant cell lines [236]. The podo-
phyllotoxin-glutamate diethyl ester analogues 105 have been 
synthesized and evaluated with encouraging cytotoxicity 
[237]. Similarly, they have synthesized new benzimidazole 

substituted analogues 106 of podophyllotoxin, and they have 
been more active than etoposide on biological evaluation 
(Fig. 18) [238]. Interestingly, this group has also synthesized 
camptothecin- epipodophyllotoxin, and taxiod-epipodophyl-
lotoxin conjugates with low and enhanced activity, respec-
tively [239, 240]. Tian and coworkers have synthesized 4 -
N-substituted-5-FU-4'-demethylepipodophyllotoxin deriva-
tives with significant cytotoxic activity against HL-60 and 
A-549 cell line [241]. 

 During the investigations on the modification of podo-
phyllotoxin ring system have led to novel podophyllotoxin 
dimers with promising cell growth inhibition in human cell 
line assays. Most of the new podophyllotoxin dimers are 
more cytotoxic in comparison to etoposide (Fig. 19) [242]. 
Recently, in this laboratory some new benzophenone-PDT, 
4 -amido (107a-d) and sulfonamido–PDT conjugates (108a-
d) with interesting DNA topoisomerase II inhibition and 
promising antitumor activity (Fig. 19) have been synthesized 
[243]. Further, several series of compounds based on PDT 
have been synthesized and evaluated activity against several 
cancer cell lines [244]. Some of them have displayed en-
couraging results against these cell lines, and detailed 
mechanistic studies are under process. 

D-Ring Modifications 

 The trans lactone on D-ring of PDT is essential for anti-
proliferative activity. However compounds with methylene 
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group have been synthesized by the replacement of lactone 
group and evaluated to possess moderate activity [245, 246]. 
Wang and coworkers [247] have synthesized a novel spin 
labeled derivative of PDT, N'-podophyllic acid-N[3-(2,2,5,5-
tetramethylpyrrolinenyloxy)]semicarbazide 109 (GP-11) and 

tested its antitumor activity. Similarly, D-ring modified 
etoposide lactam 110 and cyclosulfite analogue of PDT 111 
by expanding lactone ring have been synthesized. The com-
pound 111 has significant cytotoxic activity against human 
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tumor cell lines, but showed no in vitro inhibition against 
human DNA topoisomerase II (Fig. 20) [248, 249]. 

E-Ring Modifications 

 The modification of E-ring on PDT is related to lignans 
metabolism and its inactivation and, is perhaps the least 
modified part. However, some transformations have been 
carried out, which includes demethylations, oxidation to the 
o-quinone and the introduction of nitrogen radicals. Saulnier 
and coworkers have synthesized the deoxy E-ring analogues 
of etoposide (112, 113)

 
with weak cytotoxic activity [250]. 

Furthermore, modified E-ring PDTs without 3',4',5'-
trimethoxy groups and novel ester analogues (114, 115) have 
shown better activity compared to etoposide (Fig. 21) [251, 
253]. 

Prodrugs of Etoposide 

 Although etoposide (VP-16) is widely used in therapy, it 
presents several limitations, such as moderate potency, poor 
water solubility, development of drug resistance, metabolic 
inactivation, and toxic effects which is due to lack of selec-
tivity. A glucuronide-based, prodrug of etoposide (116-118) 
has been synthesized for prodrug monotherapy of solid tu-
mors by Schmidt and Monneret with an aim to selectively 

liberate the active compound by -D-glucuronidase, an en-
zyme that is present in necrotic tumors [254]. Senter and co-
workers found that etoposide phosphate prodrug 119 was 
100-fold less active than the parent drug at in vitro condi-
tions, and that immuno-specific activation of the prodrug 
could be accomplished using an L6-AP mAb-enzyme conju-
gate (Fig. 22) [255]. 

BENZOTHIADIAZINE 1,1-DIOXIDE AND RELATED 
COMPOUNDS 

 The versatile and synthetically accessible scaffolds have 
provided the inspiration for the discovery of a number of 
new antitumor agents with unusual mechanisms of action in 
recent years [256]. Benzothiadiazine 1,1-dioxides, the ben-
zenesulfonamide derivatives constitute an important class of 
therapeutic agents in medicinal chemistry and in recent years 
have attracted considerable attention as anticancer agents 
[257, 258]. This class of compounds (120-126) exerts their 
biological effect by acting on the inhibition of DNA, RNA or 
protein synthesis, which illustrate important targets for the 
development of anticancer agents [259, 260]. 1,2,4-
Benzothiadiazine1,1-dioxide ring system 2,10-dihydro- 
10-hydroxy-3H-imidazo[1,2-b][1,2,4]benzothiadiazine 6,6-
dioxides that possess a built in sulfonylhydroxyguanidine 
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moiety 122 exhibits anti-proliferative activity by inhibition 
of ribonucleotide reductase [260, 261]. Recently Lin and 
coworkers reported 1,2,4-triazole-3,5-diamine analogues as 
potent antitumor agents by inhibition of cyclin dependent 
kinases (Fig. 23) [262]. Moreover, some other analogues are 
reported to display antiproliferative activity by inhibiting 
cyclin-dependent kinase and tubulin polymerization [263, 
264]. However, the exact mechanism for antitumor activity 
is yet to be established. 

 Brzozowski and co-workers [265] have reported the syn-
thesis of 7-substituted 8-chloro-5,5-dioxoimidazo[1,2-
b][1,4,2]benzodithiazines 127 as potent antitumor agents 
with a high degree of selectivity against leukemia HL-60 
cells. Similarly, the benzodithiazine-aryl sulfonamide conju-
gates (128, log GI50 = < -8.00 for the leukemia SR cell line) 
and a novel series of 6-chloro-1,4,2-benzodithiazine 1,1-
dioxide derivatives (129 GI50 <10 nM for leukemia CCRF-
CEM cell line) with alkyl, aryl or heteroaryl substituents at 
position 3 have also displayed remarkable activity on the 
leukemia cell lines with moderate activity against the other 
human tumor cell lines derived from nine different cancer 
type [266, 267]. The 1,2,4-benzodithiazine 1,1-dioxide de-
rivatives (130, 131) and cyclic sulfonamide derivatives of 8-
chloro-5,5-dioxoimidazo[1,2-b][1,4,2]benzodithiazine 132 
have been reported to possess interesting anticancer proper-
ties [268]. Based on these findings, Pomarnacka and co-
workers [269, 270] have reported triazolobenzodithiadiazi-
nes as promising anticancer agents and benzothiadiazine 
derivatives (Fig. 24) have also shown potent activity against 
several cancer cell lines with ED50 up to 1.1 μg/mL [271]. 
Further, Chern and co-workers have reported fused 1,2,4-
benzothiadiazine 1,1-dioxides as potential anticancer agents 
[272, 273]. 

 From this laboratory structurally well characterized novel 
[1,2,4]triazolo[1,5-b][1,2,4]benzothiadiazine-benzothiazole 
conjugates have been reported as antitumor agents [274]. On 
evaluation of cytotoxicity against 60 human tumor cell lines 
screen, the compound 133 displayed significant growth inhi-
bition against almost all the 60 cell lines. Further, another 
series of meracapto triazolo-benzothiadiazine linked amino-
benzothiazole hybrids have synthesized and evaluated 
against selected cancer cell lines [275]. Interestingly, one of 
the synthesized compounds 134 exhibited GI50 values of 1.4 
and 2.1 M against RPMI-8226 (leukemia) and HOP-62 
(lungs) cell lines respectively. However, further structural 
modifications are required to assess the SAR studies as well 
as mechanism of anticancer activity. 

NAPHTHALIMIDES 

 The search for novel chemotherapeutic agents and ap-
proaches to cancer treatment is an active research field 
stimulated by the discovery of new biological targets, even-
tually to develop new drugs without serious side effects 
[276]. The binding of small ligands to the DNA has attracted 
an enormous amount of study in the field of molecular 
pharmacology, medicinal chemistry, and carcinogenesis 
[277-282]. In this perspective, a series of compounds with 
naphthalimide chromophore (benz[de]isoquinoline-1,3-
dione) has been discovered as potential antitumor agents. 
Brana and co-workers have shown that 3-nitronaphthalene 
monoimides with cationic substituents exhibit significant 
antitumor activity by interaction with DNA [283, 284]. Simi-
larly, Yen and co-workers have found that naphthalene mon-
oimides 135 and diimides 136 having a variety of cationic 
substituents bind to DNA by intercalation [285]. A series of 
naphthalimides and diimides with varying length of spacers 
have been synthesized and the viscometric titrations indi-
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cated that these compounds can interact strongly with DNA 
by the formation of intercalating complexes. The diimides 
bind atleast 10-fold more strongly to DNA than monoimides 
with their corresponding substituents. The naphthalimide, 
mitonafide 137 have been evaluated in phase II clinical trials 
as potential anticancer agents [286]. Mitonafide is an effec-
tive antitumor agent and it binds to DNA by intercalation 
with an association constant of 1.5 x 10

5
 M

-1
 at 0.01 M ionic 

strength [287]. Unfortunately, mitonafide has shown inap-
propriate central nervous system toxicity and overall pro-
duced a limited clinical activity [288]. Similarly, the related 
amonafide 138 has also been assessed extensively in clinical 
trials with limited success [289, 290]. 

 Brana and co-workers have attempted to improve the 
activity of lead molecules by increasing its binding capabil-
ity to the DNA [291]. In this context, a series of bis-
intercalating agents have been designed using the structural 
features of the lead molecules. They bind to DNA as bis-
intercalators and show higher binding affinity with greater 
cytotoxic activity than their parent mono-intercalators. Par-
ticularly, elinafide (139, LU-79553) displayed potent cellular 
cytotoxicity, marked in vivo activity against several tumor 
xenograft models [292, 293]. It intercalates in the major 
groove of DNA helix and has been evaluated in clinical trials 
against solid tumors. The other dinitro bis-naphthalimide 
DMP-840 140 (bisnafide) shows a wide spectrum of activity 
similar to that of elinafide, and is also under clinical trials 
(Fig. 25) [294]. 

 Recently efforts have been made to enhance the potency 
of mononaphthalimides and bis-naphthalimides, by incorpo-
rating an anthracene moiety rather than the simpler naphtha-
lene chromophore. These compounds include azonafide 141 
and bibenoline that shows an interesting antitumor profile. 
Similarly, many naphthalimides as well as bis-
naphthalimides have also been synthesized by fusing imida-
zole, pyrazine, furan and thiophene rings (142-145) to the 
naphthalene moiety have shown an interesting antitumor 
profile [295-298]. Some of these compounds have shown 
more potent cytotoxicity than elinafide against human colon 
carcinoma cells (HT-29). Tumiatti and coworkers have syn-
thesized a series of naphthalimide (NI) and 1,4,5,8-
naphthalentetracarboxylic diimide (NDI) derivatives (146a-i) 
and evaluated for their anti-proliferative activity in breast 
cancer and leukemia cell lines. Interestingly, bis-substituted 

derivatives are more cytotoxic than the corresponding NI 
derivatives in the range of 0.2-1.7 M [299]. 

 To overcome the side effects of amonafide, Kiss and co-
workers have designed, synthesized a library of new mole-
cules and evaluated their antiproliferative activity [300]. 
Among them the compound (UNBS3157) 147 has displayed 
a 3-4 folds higher in vitro antitumor activity (IC50 range of 
0.8-1.8 M) than amonafide with a distinct mechanism of 
action, notably inducing autophagy and senescence in cancer 
cell lines. It also displays higher in vivo activity in a range of 
cancer models and higher tolerance. Continuing on the suc-
cess of platinum anticancer drugs, Ranninger and coworkers 
reported two Pt-bis-(naphthalimide) complexes (148, 149) 
which demonstrated promising cytotoxic activity due to 
combined effect of platinum and intercalation [301]. Moreo-
ver, non-platinum complexes such as gold (I) phosphine 
complex [N-(N', N'-dimethyl aminoethyl)-1,8-naphthalimide-
4-sulfide] 150 have strong antiproliferative effects by induc-
tion of apoptosis via mitochondrial pathways (Fig. 26) [302]. 

 As a part of development of new anticancer agents, from 
this laboratory several series of coumarin-naphthalimido 
conjugates, naphthalimido-dihydropyrimidinone hybrids 
have been synthesized and evaluated for antitumor activity 
[303, 304]. Amongst them, coumarin linked compound 151 
has been the most active (IC50 0.19-31 M) against all the 
six cell lines, while most of these hybrids displayed moder-
ate activity due to high polarity. Recently, another series of 
benzimidazole-naphthalimide conjugates have been synthe-
sized and evaluated for activity against 60 anti-tumor cell 
line screen. Most of them have shown significant activity 
and the conjugate 152 have shown potent activity (Log GI50 
= -5.62) against human tumor cell lines [305]. Moreover, 
efforts are under progress to develop new molecules based 
on naphthalimides scaffolds as potential antiproliferative 
agents. 

Naphthalimide Prodrugs 

 The efficacy of clinically used anticancer therapeutics is 
limited, since they are not selective for cancer cells causing 
side effects such as damages in bone marrow and gut epithe-
lia [306]. To fulfill this need, one strategy is the development 
of tumor activated prodrugs (TAP), which are relatively non-
toxic and can be selectively activated in tumor tissue [307, 
308]. In this perspective, Xu and coworkers have recently 
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designed and synthesized novel tertiary amine N- oxides of 
naphthalimide prodrugs (153-155) as potential anticancer 
agents as depicted in Fig. (27) [309]. These N-oxides have 
shown less cytotoxicity compared to corresponding naph-
thalimides in oxic A375 cell cultures. However, all these 
have displayed more in vitro cytotoxicity against hypoxic 
A375 cells and might be used as interesting candidates of 
prodrug leads in hypoxic solid tumor cells. 

MONASTROL AND ITS ANALOGUES 

 The cell permeable small molecules that perturb specific 
proteins associated with mitotic process are potential leads 
for development of anti-proliferative agents as well as valu-
able tools for understanding dynamic cellular processes. In 
1999, a phenotype screening based on post transitional modi-
fication and visualization of microtubules and chromatin has 
led to identification of compounds that affect mitosis. From 
the library of 16,320 compounds, one of the compound with 
structurally simple dihydropyrimidone scaffold has been 
found to arrest mitotic cell division by specifically inhibiting 
the motility of kinesin specific protein (KSP, Eg5) required 
for spindle bipolarity and has been named as monastrol 156 
[310]. Thus, monastrol is the first Eg5 inhibitor to be identi-
fied with an IC50 value of 14 M causing a specific and re-
versible cell cycle block. In contrast to anticancer drugs like 
taxanes, it does not display any neurotoxicity and is in fact 
reported to enhance axonal growth [311-313]. The antimi-
totic activity of monastrol itself is not very high and this 
does not warrant it as a drug candidate. Therefore in recent 
years, the development of more potent, specific and cell 
permeable monastrol analogues has been carried out. Few 
reports are available in literature on the derivatization of 
monastrol and the subsequent determination of kinesin Eg5 
inhibition activity. 

 Giannis and co-workers have reported the screening of 

nearly 40 compounds for their ability to inhibit Eg5 by using 

an in vitro steady-state ATPase assay [314]. Most of the 

compounds are found to be less potent compared to monas-

trol, however, three conformationally rigid bicyclic com-

pounds are significantly more potent Eg5 inhibitory activity. 

Enastron 157 (IC50 = 2 M), dimethylenastron 158 (IC50 = 200 

nM) and enastrol 159 (IC50 = 2 M) obtained by the cycliza-

tion of the side chain have exhibited 10-100 times more po-

tency than monastrol. Moreover, these compounds have also 

arrested mitosis in cultured cells. Recently, Lebeau and co-

workers have designed and synthesized a series of monastrol 

derivatives and evaluated for their Eg5 inhibitory activity 

[315]. The compound 160 has appeared to be more potent 

than monastrol by a five-fold factor, whereas the compounds 

(161-163) have shown potent Eg5 inhibitory activity. Gheber 

and co-workers have described the differential effects of 

monastrol on AGS and HT-29 cell lines in comparison with 

taxol [316]. At 50 M, monastrol has inhibited AGS cell 

growth, while HT29 cells have been completely inhibited at 

a concentration as high as 150 M. Russowsky and co-

workers have reported the synthesis and anti-proliferative 

activity of monastrol, oxo-monastrol 164 and other eight 

oxygenated derivatives on seven human cancer cell lines 

[317]. For all evaluated cell lines, monastrol was shown to 

be more active than its oxo-analogue, suggesting the impor-

tance of the sulfur atom for the antiproliferative activity. The 

thio-derivatives (165-167) have displayed relevant antipro-

liferative properties with 3,4-methylenedioxy derivative 167 

being approximately more than 30 times more potent than 

monastrol against colon cancer (HT-29) cell line (Fig. 28).  

 In this laboratory, efforts are in progress exploring the 

SAR studies of monastrol based scaffold. A library of struc-

tural variants of monastrol have been designed and synthe-

sized with a view to enhance the kinesin Eg5 inhibitory and 

cytotoxicity, which will be communicated shortly [318]. 
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CONCLUSION  

 Despite the availability of anticancer agents derived from 
natural products and their semisynthetic derivatives, the de-
velopment of a safe and site-specific anticancer drug still 
remains a challenge. The major obstacles for this challenge 
are the association of toxicity with drugs which is due to lack 
of specificity, as these agents kill healthy cells and the drug 
resistance which have arisen in recent years. The combina-
tion therapy employing different chemotherapeutic agents 
has been used to combat this problem with some success. 
However, the possibility of the development of drug resis-
tance still remains. Keeping pace with these challenges, 
around the world and from this laboratory a good number of 
diverse molecules with a novel mode of action have been 
developed based on pyrrolo[2,1-c][1,4]benzodiazepines, 
podophyllotoxins, benzothiadiazine1,1-dioxides, naph-
thalimides, monastrol etc. Now efforts are being focused 
towards the intervention of site-specific anticancer agents 
eventually to develop effective chemotherapeutics for the 
treatment of human malignancies. 
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